
Introduction

Hello friends! In this guide, we're going to learn about template reference.
There are multiple ways to interact between components, such
as @Input and @Output. But what if we have to call the child function in the parent

component?
In this scenario, we could create a new function in the parent component, or we could
create a service file with a common function and use it in the parent and child function.
Today we'll learn another method known as template reference so you can avoid
creating a different function in the parent component or a different service file.

Creating Components

We need to create two components: a child component and a parent component. It is a
good practice to have a different folder for each file. So I'm going to create all the
components in components folder.

1

ng g c /components/parent --skipTests=true

console

1

ng g c /components/child --skipTests=true

console
In the above snippet, I've used the short form of the generate, or g, and the short form

of the component,or c. Notice that --skipTests=true, lthough we're not going to

write and unit test case, so I've used that to skip the file of the testing.
So we are ready to go. Let's get dive into template reference.

Make Function in Child Component

Now it's time to make a function in the child component so we can call it in the parent
component by using the reference of the child component.
child.component.ts

import { Component, OnInit } from '@angular/core';

@Component({

 selector: 'app-child',

 templateUrl: './child.component.html',

 styleUrls: ['./child.component.scss']

})

export class ChildComponent implements OnInit {

 constructor() { }

 ngOnInit() {

 }

 hello(){

 console.log('hello from child component');

 }

}

I've made a hello() function. Once the function is called, we'll get a message on the

console.

Get Reference of Child Component

We've successfully made a function in the child component. Now it's time to put the
child component in the parent component.
parent.component.html

<app-child #child></app-child>

Noticed that I've written #child under the tag of app-child. In Angular, to refer to

any component, we need to put # with a string. I've written #child in our case so we

can use it to get the reference of the child component.

Use of @ViewChild Decorator

The @ViewChild() decorator is one of the most useful decorators in Angular. It is

used to get the reference of the component. The syntax of @ViewChild() is :

@ViewChild('referenceVariable') childVariable:ChildComponent

It accepts a reference variable, which is #child in our case. We've written this in the

parent component under the child tag. childVariable can be anything—it's just a

variable name that we will use to access a variable or function of the child component.
To make a typed secure, we should always write the type of the variable by using a
colon (:).

Use of ngAfterViewInit() Angular Lifecycle Hooks

ngAfterViewInit is one of the Angular lifecycle hooks. We can use

the @ViewChild variable into it. We can't access the @ViewChild variable

in ngOnInit, ngOnChanges, or ngDoCheck because it can be accessed only after our

view is initialized.

Call Child Function in Parent Component

parent.component.ts

import { Component, OnInit, ViewChild, ElementRef } from

'@angular/core';

import { ChildComponent } from '../child/child.component';

@Component({

 selector: 'app-parent',

 templateUrl: './parent.component.html',

 styleUrls: ['./parent.component.scss']

})

export class ParentComponent implements OnInit {

 @ViewChild('child') child: ChildComponent;

 constructor() { }

 ngOnInit() {

 }

 ngAfterViewInit(){

 this.child.hello();

 }

}

In the above snippet, we've used the @ViewChild decorator to get the reference of the

child element. We used the child element reference variable I've
called hello() function in ngAfterViewInit(), which we've defined in the child

component.
Output:

hello from child component

console
You'll get the same output at the console.

Conclusion

Template reference is one of the best ways to minimize code. It saves a line of code
and gives you the same result with minimum time. Lines of code do matter if you talk
about productivity.
You can read more about template reference here.

Call child method in parent html file

In this case the child method is openFileDialog()

Another use of template variable

A template reference variable is often a reference to a DOM element within a template. It can also

be a reference to an Angular component or directive or a web component (Read more

at Angular.io). That means you can easily access the variable anywhere in the template.

You declare a reference variable by using the hash symbol (#). The #firstNameInput declares

a firstNameInput variable on an <input> element.
<input type="text" #firstNameInput><input type="text" #lastNameInput>

After that, you can access the variable anywhere inside the template. For example, I pass the

variable as a parameter on an event.
<button (click)="show(lastNameInput)">Show</button>

Remember that the lastNameInput belongs to HTMLInputElement type.
show(lastName: HTMLInputElement){

 console.log(lastName.value);

}

https://angular.io/api/core/ViewChild
https://angular.io/guide/template-syntax#ref-vars

Usually, the reference variable can only be accessed inside the template. However, you can

use ViewChild decorator to reference it inside your component.
import {ViewChild, ElementRef} from '@angular/core';// Reference

firstNameInput variable inside Component

@ViewChild('firstNameInput') nameInputRef: ElementRef;

After that, you can use this.nameInputRef anywhere inside your Component.
show(lastName: HTMLInputElement){

 this.fullName = this.nameInputRef.nativeElement.value + ' ' +

lastName.value;

}

http://twitter.com/angular/core
http://twitter.com/ViewChild

	Introduction
	Creating Components
	Make Function in Child Component
	Get Reference of Child Component
	Use of @ViewChild Decorator
	Use of ngAfterViewInit() Angular Lifecycle Hooks
	Call Child Function in Parent Component
	Conclusion

